
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 639
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Design and Evaluation of classification algorithm
on GPU

Kinjal Shah, Prashant Chauhan, Dr. M. B. Potdar

Abstract— Recent developments in Graphics Processing Units (GPUs) have enabled inexpensive high performance computing for
general-purpose applications. Due to GPU's tremendous computing capability, it has emerged as the co-processor of CPU to achieve a
high overall throughput. CUDA programming model provides the programmers adequate C language like APIs to better exploit the parallel
power of the GPU. K-nearest neighbor (KNN) is a widely used classification technique and has significant applications in various domains.
The computational-intensive nature of KNN requires a high performance implementation. In this paper, we propose GPU based parallel
implementation of KNN. We evaluate our implementation by using different size of images. Our parallel implementation gives us 1.68X
speed up, while working with GPU gives us 8.413Xspeedup.

Index Terms— data mining, classification, decision tress, KNN, MPI, CUDA, CPU, OPEN MP

—————————— ——————————

1 INTRODUCTION
The size of datasets are increasing tremendously as there is

a large speed up in processing and communication have im-
proved the capability of data generation and collection in are-
as such as scientific experimentation, business and govern-
ment transaction, as well as internet. The current system can
not handle current data sets because of the large size of data.
Now a days new technique that automatically handles this
large size of data into meaningful information is required.
Data mining, process of analysing data for different perspec-
tive and summarising into useful information. Data mining is
used in fields like crediting, banking, research areas, market-
ing, transportation, insurance, WWW, scientific simulation etc.

Classification is a data mining technique that assigns items

in order to target class. Main goal of classification is to accu-
rately predict the target class for each case of data. For exam-
ple, a classification model could be used to identify loan appli-
cation such as low, medium or high credit risk. The task of
classification begins with the data set for which the classes are
known. As the classifications are discrete so they do not imply
order.

K-Nearest Neighbor (KNN) is one of the most widely used

classification algorithms. For each unknown query object, KNN
scans all the objects in the reference dataset. Assume that num-
ber of reference object is m and number of query object is n then
total time taken for computing is O(nm) , which is computa-
tionally intensive. Therefore serial program handling large data
set will take a lot of timing, hence parallelisation is needed.

The rest of this paper is organized as follows. Section 2 pre-
sents the background knowledge of this parallelism. Section 3
overviews the CUDA related work. In section 4, we present
CUKNN. Experimental results are presented in section 5 and
we summarize our work in section 6.

2 PARALLEL APPROCHES
Many scientific and computer related and large problems

can be bettlerly solved using parallel programming. The
memory limits faced by serial classifiers and need of classify-
ing larger data set in shorter time, make classification algo-
rithm to solve the task using parallel approach. The parallel
formulation, must address issue of efficiency and scalability
both in terms of memory requirements and parallel run time.
Data mining can be executed in a highly parallel environment
over multiple processors [6].

Modern programming languages are also structured so as

to efficiently utilize novel architectures. There exist dedicated
parallel programming paradigms for parallelizing the algo-
rithms over multiprocessor and networked systems. OPENMP
and MPI are used to achieve shared and distributed memory
parallelization. CUDA is a programming language that is de-
signed for parallel programming on NVIDIA GPU [7]. In
CUDA, thread access different memories of GPU. CUDA of-
fers a data parallel programming model.

General purpose programming can also be done on the

GPU where multi cores can be used for highly parallel pro-
cessing. Many data mining algorithms have been specifically
designed in CUDA and they show drastic improvement in
performance. Parallel programming is incomplete without
discussing the most recent approach called MAP Reduce. It
can process large sized data in highly parallel manner [8]. Map
Reduce was introduced by Google in 2004. Map Reduce has

————————————————
• Kinjal Shah is currently pursuing masters degree program in computer

engineering in NIRMA University, India, . E-mail:
13mcen33@nirmauni.ac.in

• Prashant chauhan is working as project scientist at Bhaskaracharya Insti-
tute for Space Applications and Geo-informatics, Gandhinagar.
Email:Prashant.mecs@gmail.com

• Dr. M. B. Potdar is working as project director at BISAG, Gandhinagar.
Email:mbpotdar11@gmail.com

IJSER

http://www.ijser.org/
mailto:13mcen33@nirmauni.ac.in

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 640
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

become the most popular framework for mining-large scale
datasets in parallel as well as distributed environment. Differ-
ent computing environments’ require different programming
paradigms depending upon the problem type. As data mining
techniques are data and compute intensive both, it can be ex-

ploited better by using any one or combination of parallel
programming approaches given in the table [9].

3 CUDA PARALLEL COMPUTING ARCHITECTURE

3.1 NVIDIA GPU Architecture

GPUs have a parallel architecture with massively parallel
processors. The graphics pipeline is well suited to rendering
process because it allows the GPU to function as a stream pro-
cessor. NVIDIA's GPU with the CUDA programming model
provides an adequate API for non-graphics applications. The
CPU treats a CUDA device as a many-core co-processor.

At the hardware level, CUDA-enabled GPU is a set of

SIMD stream multiprocessors (SMs) with 8 stream processors
(SPs) each. Each SM contains a fast shared memory, which is
shared by all its processors as shown in Figure. A set of local
32-bit registers is available for each SP. The SMs communicate
through the global/device memory. The global memory can
be read from or written to by the host, and are persistent
across the kernel launches of the same application, however, it
is much slower than shared memory. Shared memory is man-
aged explicitly by the programmers. Compared to the CPU,
the peak floating-point capability of the GPU is an order of
magnitude higher, as well as the memory bandwidth.

3.2 CUDA programming model
At the software level, CUDA model is a collection of

threads running in parallel. The unit of work issued by the
host computer to the GPU is called a kernel. CUDA program
is running in a data-parallel fashion. Computation is orga-
nized as a grid of thread blocks. Each SM executes one or more
thread blocks concurrently. A block is a batch of SIMD-parallel

threads that runs on the same SM at a given moment. For a
given thread, its index determines the portion of data to be
processed. Threads in a common block communicate through
the shared memory.

CUDA consists of a set of C language extensions and a

runtime library that provides APIs to control the GPU. Thus,
CUDA programming model allows the programmers to better
exploit the parallel power of the GPU for general-purpose
computing.

4 K- NEAREST NEIGHBOUR ALGORITHM

4.1 K-Nearest Neighbor

KNN algorithm is a method for classifying an object based on
the closest reference object. KNN is a lazy leaner. Here a query
object is classified by a majority vote of its k nearest neighbors
in the reference objects. Given an unknown object p, a KNN
classifier searches the reference dataset for the k objects that
are closest to p, and then, p is assigned to the majority class
among the k-nearest neighbors. “Closeness” is usually defined
as a distance metric, such as Euclidian distance, Cosine dis-
tance etc. The most time consuming part of KNN is distance
calculation component and sorting component. Therefore, the
work focuses on accelerating these two components:

1.) Distance Calculation Kernel
The computation of the distance can be fully parallelized

since the distances between pair of tuples are independent.
This property makes KNN suitable for a GPU parallel imple-
mentation. After transferring the data from CPU to GPU, each

MPI OPENMP CUDA Map Reduce
Framework for distributed
memory parallelism.

Framework for threaded par-
allelism.

A parallel programming model for
multiprocessing environment for
GPUs.

Multi-threaded frameworks.
Threads assigned for Map or re-
duce task.

Each has own private
memory.

Shared memory. Both shared and private memory. Map task run on slave nodes and
Reduce task work on slave nodes.

Multiple task run concurrent-
ly

Multiple threads run concur-
rently

Multiple light weight threads run
concurrently on light weighted
GPU

Library expresses two functions:
Map And Reduce

Message based : send and
receive

pragma omp directives Kernel functions runs on GPUs Based on key-value pair

On distributed network On multicore processor Specially designed for GPUs. On multicore CPU, GPU, Grids
and on Clouds.

Flexible and expressive. Easier to program and debug
than MPI.

Based on C- language. Used when data size is too large.

Each processor has its own
local variable.

Directives can be added. A kernel functions has its own
local variables.

Map task is highly scalable.

Table 1: Different Parallel Approach[1]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 641
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

thread performs the distance calculation between the query
object and a reference object. Threads in a common block
share the reference objects with others. Since the number of
objects is large, a large number of threads and blocks are
launched in this kernel. In distance calculation kernel, both
reference data and query data are loaded from global memory
into shared memory. Each Stream Processor in a block fetches
data from shared memory [4].

Figure 1: k-nearest neighbor. n is a new case. It would be as-
signed to the class x because the seven x’s within the ellipse out-
number the two y’s

Obj0

Obj 1

………..

Obj 254

Obj 255

Figure 2: Parallel Approach for KNN

2.) Sorting Kernel
After calculating distance between query object, p, and

reference object, sorting is performed to find KNN of p. The
distances calculated by threads in common block are stored in
shared memory. Threads ti takes care of one distance di. By
comparing distance calculated by other threads, ti obtains the
rank of di. All the threads in common block generate such task
simultaneously, called local-k nearest neighbours of p. We use
only one thread t to find the global-k nearest neighbors across
all the blocks from the local-k neighbors on each block. We
launch m blocks and each block stores k shortest distance in
ascending order. In first iteration, thread t selects the global

shortest one from the m local-k neighbors. Multiple times this
step is repeated until k global nearest neighbors of p are select-
ed. This is shown in the figure. Once the global-k nearest
neighbors is obtained, it is easy to figure out the class label of
p.

Figure 3: Global- KNN from m local –KNN [9]

4.2 Multiple Query Objects

The number of query objects to be classified is usually

more than one in real application. The performance of per-
forming classification for multiple query objects in a parallel
manner is definitely superior to the sequential manner. Meth-
od is as follows:

Distance calculation kernel. In addition to a portion of refer-
ence objects, all the query objects are loaded into the shared
memory of every block in the GPU kernels from the CPU.
Then, the kernel is launched where each thread performs the
distance calculation between the query objects and a reference
object. Thus, at the end of this kernel, the distances between
each query object and the reference object is calculated, respec-
tively.

Sorting kernel. For a given query object, the sorting process is
applied. Assume q query objects to be classified, q threads are
used to generate the global-k nearest neighbors with one query
per thread. In this way, the sorting process of the q query ob-
jects is performed in parallel. Notice that all the operations are
performed in shared memory, which is highly efficient.

5 EXPERIMENTAL EVALUATION
The following shows the flow chart of KNN algorithm.
The device used in our experiment is NVIDIA’s GeForce GTX

70 ti with 2 GB of device memory. CUDA v5.5. We implemented
KNN algorithm using matlab and gpu. Initially we trained 100
images of different sizes and then tested for 2 images using KNN
algorithm. The following table shows the performance compari-
son while working with 10, 50, 100, 150 images. This gives us
8.413Xspeed up.

The following two graphs show the comparison performance

of while working with sequential algorithm to parallel algorithm
and while working with GPU.

 X

 X

 X

 X

 Y

X X X
X N Y
X X X
 Y

Query object

Shared
memory Distance calcu-

lation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 642
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Flowchart for KNN algorithm

START

Training dataset

Initialization, define k

Compute distance between input sample and training
samples

Sort distance

Take k nearest neighbors

Perform testing using knn algo-
rithm

Create prediction matrix

Create confusion matrix

Print Error

STOP

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 643
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Table 2: Experimental time

Figure 4: performance comparison with sequential
timing with parallel timing

 Figure 5: Performance comparison of sequen-
tial timing with GPU timing

6 CONCLUSION
In this paper, we presented a parallel implementation of

KNN. It is hybrid implementation of CPU and GPU. We created
an array on GPU which reads number of images and process on
it. Experiment showed good scalability on image data. KNN pre-
sented up to 8.413X speedup. The result shows that KNN is suit-
able for large scale dataset.

ACKNOWLEDGMENT
This paper is carried out with the full support from

Bhaskaracharya Institute for Space Applications and Geo-
informatics and the director of institute Mr T. P. Singh. I am
also thankful to all the members of the institute for supplying
the precious data and resources.

REFERENCES
[1] Kinjal Shah, M. B. Potdar, Prashant Chauhan, Sapan Mankad, Classi-

fication Techniques in parallel environment- A comprehensive Sur-
vey, International Journal of Computer Applications, Volume 108, is-
sue 1

[2] Shenshen Liang; Ying Liu; ChengWang; Liheng Jian, "Design and
evaluation of a parallel k-nearest neighbor algorithm on CUDA-
enabled GPU," Web Society (SWS), 2010 IEEE 2nd Symposium on ,
vol., no., pp.53,60, 16-17 Aug. 2010 doi: 10.1109/SWS.2010.5607480

[3] Jia Tse, "Image processing with cuda," Master's Thesis, University Of
Nevada, Las Vegas, August 2012.

[4] http://de.mathworks.com/company/newsletters/articles/gpu-
programming-in-matlab.html?nocookie=true

[5] Garcia, V.; Debreuve, E.; Nielsen, F.; Barlaud, M., "K-nearest neigh-
bor search: Fast GPU-based implementations and application to

No. Of
images

Working
with sequential
approach

Working
with 2 parpool
supported by
matlab

Working
with gpu

10 8. 2453s 6.50s 2.56s

50 29.51s 19.15s 3.89s

100 54.69s 32.43s 6.63s

150 87.28s 47.56s 13.20s

IJSER

http://www.ijser.org/
http://de.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html?nocookie=true
http://de.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html?nocookie=true

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 644
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

high-dimensional feature matching," Image Processing (ICIP), 2010
17th IEEE International Conference on , vol., no., pp.3757,3760, 26-29
Sept. 2010

[6] Wang, Lizhe, et al. "G-Hadoop: MapReduce across distributed data
centers for data-intensive computing." Future Generation Computer
Systems 29.3 (2013): 739-750

[7] Nickolls, John, et al. "Scalable parallel programming with CUDA."
Queue 6.2 (2008): 40-53.

[8] K. Bhaduri, R. Wolf, C. Giannella, and H. Kargupta. “Distributed
decision-tree induction in peer-to-peer systems.” Stat. Anal. Data
Min., 1(2):85–103, 2008.

[9] Yike Guo and R. Grossman, “HIGH PERFORMANCE DATA MINING
Scaling Algorithms, Applications and Systems”, A Special Issue of
DATA MINING AND KNOWLEDGE DISCOVERY, Volume 3, No.
03(1999).

IJSER

http://www.ijser.org/

	1 Introduction
	2 PARALLEL APPROCHES
	3 CUDA parallel computing architecture
	3.1 NVIDIA GPU Architecture
	3.2 CUDA programming model

	4 K- NEAREST NEIGHBOUR ALGORITHM
	4.1 K-Nearest Neighbor

	5 EXPERIMENTAL EVALUATION
	6 Conclusion
	Acknowledgment
	References

